Hand gestures improve learning in both signers, speakers

Date: August 19, 2014
Source: University of Chicago

Summary: Spontaneous gesture can help children learn, whether they use a spoken language or sign language, according to a new report. "Children who can hear use gesture along with speech to communicate as they acquire spoken language," a researcher said. "Those gesture-plus-word combinations precede and predict the acquisition of word combinations that convey the same notions. The findings make it clear that children have an understanding of these notions before they are able to express them in speech."

Using gestures helps children develop basic learning and cognitive skills, aiding them in problem-solving tasks. Credit: Laura Tharsen/Susan Goldin-Meadow Lab [Click to enlarge image]

Spontaneous gesture can help children learn, whether they use a spoken language or sign language, according to a new report. Previous research by Susan Goldin-Meadow, the Beardsley Ruml Distinguished Service Professor in the Department of Psychology, has found that gesture helps children develop their language, learning and cognitive skills. As one of the nation's leading authorities on language learning and gesture, she has also studied how using gesture helps older children improve their mathematical skills.

Goldin-Meadow's new study shows how gesturing contributes to language learning in hearing and in deaf children. She concludes that gesture is a flexible way of communicating, one that can work with language to communicate or, if necessary, can itself become language. The article is published online by Philosophical Transactions of the Royal Society B and will appear in the Sept. 19 print issue of the journal, which is a theme issue on "Language as a Multimodal Phenomenon."

"Children who can hear use gesture along with speech to communicate as they acquire spoken language," Goldin-Meadow said. "Those gesture-plus-word combinations precede and predict the acquisition of word combinations that convey the same notions. The findings make it clear that children have an understanding of these notions before they are able to express them in speech."

Recombinant Proteins
4000+ Hu, Mus, Rat, Virus Proteins Research Tools, Online Order Now!

Related Topics
Mind & Brain
- Language Acquisition
- Child Development
- Relationships
- Learning Disorders
- Literacy
- Educational Psychology

Related Articles
- Psycholinguistics
- Great Ape language
- Hearing impairment
- Developmental psychology
- Early childhood education
- Mirror test

Share This
- Email to a friend
- Facebook
- Twitter
- LinkedIn
- Google+
- Print this page

Breaking News:
Marine Life and Changes in Coastal Upwelling

Helping Children Learn Language, Develop Cognitive Skills
June 16, 2014 — Examining factors such as how much children gesture at an early age may make it possible to identify and intervene with very young children at risk for delays in speech and cognitive development, ...

Children With Brain Lesions Able to Use Gestures Important to Language Learning
Feb. 20, 2013 — Children with brain lesions suffered before or around the time of birth are able to use gestures -- an important aspect of the language learning process -- to convey simple ...

In Brain-Injured Children, Early Gesturing Predicts Language Delays
Mar. 25, 2010 — A new study has found that gesturing at 18 months (but not early speech) predicted which children with pre- or perinatal brain lesions had vocabulary delays a year later. The results suggest that ...

Two Sides of the Same Coin: Speech and Gesture Mutually Interact to Enhance Comprehension
Feb. 24, 2014 — Researchers have studied the acquisition and development of language in babies on the basis of the temporary coordination of gestures and speech. The results are the first in showing how and when ...

More related stories

Save/Print:
Share:

http://www.sciencedaily.com/releases/2014/08/140819094005.htm

Pagina 1 van 3
In addition to children who learned spoken languages, Goldin-Meadow studied children who learned sign language from their parents. She found that they too use gestures as they use American Sign Language. These gestures predict learning, just like the gestures that accompany speech.

Finally, Goldin-Meadow looked at deaf children whose hearing losses prevented them from learning spoken language, and whose hearing parents had not presented them with conventional sign language. These children use homemade gesture systems, called homesign, to communicate. Homesign shares properties in common with natural languages but is not a full-blown language, perhaps because the children lack “a community of communication partners,” Goldin-Meadow writes. Nevertheless, homesign can be the “first step toward an established sign language.” In Nicaragua, individual gesture systems blossomed into a more complex, shared system when homesigners were brought together for the first time.

These findings provide insight into gesture’s contribution to learning. Gesture plays a role in learning for signers even though it is in the same modality as sign. As a result, gesture cannot aid learners simply by providing a second modality. Rather, gesture adds imagery to the categorical distinctions that form the core of both spoken and sign languages.

Goldin-Meadow concludes that gesture can be the basis for a self-made language, assuming linguistic forms and functions when other vehicles are not available. But when a conventional spoken or sign language is present, gesture works along with language, helping to promote learning.